

Foundation Fieldbus 5400-IS ICoT Positioner

Installation and Operation Manual

1. Revision History 1.1.Revision 1.0

24 March, 2003 Initial Version

1.2 Revision 1.2

4 May, 2005 Updated content and included FISCO Control Drawing in Appendix A

Table of Contents

1.	REV	ISION HISTORY	1
	1.1.	REVISION 1.0	1
ТА	ABLE O	F CONTENTS	2
2	DEF	INITIONS ACRONYMS AND ABBREVIATIONS	6
 2	DEI		
3.	KEF	EKENCE	7
4.	DEV	ICE OVERVIEW	8
	4.1.	ABOUT FOUNDATION FIELDBUS TM	8
	4.2.	FIELDBUS FOUNDATION TM CONFORMANCE DOCUMENTATION, CFF AND DD AVAILABILITY	8
	4.3.	HOST SYSTEM COMPATIBILITY DOCUMENTATION	9
	4.4.	INTRINSICALLY SAFE DESIGN CRITERIA AND AGENCY APPROVALS	9
	4.5.	WESTLOCK FOUNDATION FIELDBUS 5400-IS ICOT POSITIONER.	10
	4.0.	PRINCIPAL OF OPERATION	12
5.	FOU	NDATION FIELDBUS™ COMMUNICATIONS OVERVIEW	12
	FIGURE	1 – LINKED FUNCTION BLOCKS	13
	FIGURE	$2-\mbox{Channel Linking HW}$ via TB Configuration with FB(s)	13
	FIGURE	3 – DOWNLOAD OF CONTROL APPLICATION TO FIELD DEVICE	14
	5.1.	CHANNELS	14
	5.2.	ANALOG INPUT.	15
	5.5. 5.4	ANALOG OUTPUT	13
	5.4.		13
	5.5.		15
			11
6.	SPE	CIAL FEATURES	16
6.	SPE 6.1.	CIAL FEATURES Non-Contact Position Feedback	16
6.	6.1. 6.2.	CIAL FEATURES Non-Contact Position Feedback Remote Position Control	16 16 17
6.	6.1. 6.2. 6.3.	CIAL FEATURES	16 16 17 17
6.	SPE 6.1. 6.2. 6.3. 6.4.	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors	16 16 17 17 17 17
6.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD ON-Board Sensors Local Keypad NUTEL LICENT CALUED ATION VIA FE	16 17 17 17 17 17 17
6.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed	
6.	SPE ⁴ 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD ON-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Al arming	16 17 17 17 17 17 18 18 18 18
6.	SPE ⁴ 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9.	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming	
6. 7.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming	
6. 7.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTENC THE POSITIONER	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTING THE POSITIONER	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MO 8.1.	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD ON-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming IDTING THE POSITIONER Mounting Positioner on a Rotary Actuator	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOI 8.1. FIGURE	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD ON-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTING THE POSITIONER Mounting Positioner on a Rotary Actuator 4	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU 8.1. FIGURE FIGURE	Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTING THE POSITIONER Mounting Positioner on a Rotary Actuator 4. 5. 6	
6. 7. 8.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU 8.1. FIGURE FIGURE 8.2.	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTING THE POSITIONER Mounting Positioner on a Rotary Actuator 4	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU 8.1. FIGURE FIGURE FIGURE 8.2. FIGURE	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD ON-Board Sensors Local Keypad Intelligent Calibration via FF Negligible Bleed Predictive Alarming Preventative Maintenance Alarming INTING THE POSITIONER Mounting Positioner on a Rotary Actuator 4 5 6 Mounting Remote Positioner on a Rotary Actuator 7	
6. 7. 8.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOI 8.1. FIGURE FIGURE FIGURE 8.2. FIGURE FIGURE	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming Iteral FEATURES JNTING THE POSITIONER Mounting Positioner on a Rotary Actuator 4	
6. 7. 8.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOI 8.1. FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE	CIAL FEATURES Non-Contact Position Feedback Remote Position Control Local LCD On-Board Sensors Local Keypad Intelligent Calibration via FF. NegLigible Bleed Predictive Alarming Preventative Maintenance Alarming Image: Construct Construction on a Rotary Actuator 4	
 6. 7. 8. 	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU 8.1. FIGURE FIGURE FIGURE FIGURE FIGURE FIGURE 8.2.	CIAL FEATURES NON-CONTACT POSITION FEEDBACK. REMOTE POSITION CONTROL LOCAL LCD ON-BOARD SENSORS. LOCAL KEYPAD. INTELLIGENT CALIBRATION VIA FF. NEGLIGIBLE BLEED PREDICTIVE ALARMING PREVENTATIVE MAINTENANCE ALARMING ERAL FEATURES JNTING THE POSITIONER MOUNTING POSITIONER ON A ROTARY ACTUATOR. 4. 5. 6. MOUNTING REMOTE POSITIONER ON A ROTARY ACTUATOR 7. 8. 9. MOUNTING POSITIONER ON A LINEAR ACTUATOR	
6. 7. 8.	SPE 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. GEN MOU 8.1. FIGURE FIGURE FIGURE 8.2. FIGURE 8.3. FIGURE	CIAL FEATURES Non-Contact Position Feedback. Remote Position Control Local LCD On-Board Sensors. Local Keypad. Intelligent Calibration via FF. Negligible Bleed Predictive Alarming Preventative Maintenance Alarming ERAL FEATURES JNTING THE POSITIONER Mounting Positioner on a Rotary Actuator. 4. 5. 6. Mounting Remote Positioner on a Rotary Actuator 7. 8. 9. Mounting Positioner on a Linear Actuator 10.	16 17 17 17 17 17 17 18 18 19 20 20 21 22 23 23 24 25 25

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

0.1.	MOUNTING REMOTE POSITIONER ON A LINEAR ACTUATOR	
FIGUR	E 12	27
FIGUR	Е 13	28
9. PN	EUMATIC CONNECTIONS	29
91	SINGLE ACTING ACTUATOR (SPRING RETURN):	29
9.2	DOUBLE ACTING ACTUATOR (DIVENOR REPORT):	29
FIGUR	E 14	
10.	WIRING INSTRUCTIONS FOR THE FF ICOT-IS	
10.1		20
10.1.	CONNECTING THE FE ICOT-IS TO THE BUS	
FIGUR	E 15	
10.3.	CONNECTING THE FF ICOT-IS REMOTE POSITION SENSOR HOUSING	
FIGUR	Е 16	
11. 5	SWITCH ADJUSTMENT ON ROTARY ICOT	31
FIGUR	Е 17	
12.	FOUNDATION™ FIELDBUS SUPPORTED TOPOLOGIES	
FICUP	г 18	30
12 1	TE LOOT IS DISDI AV	
13. 1	GF ICOT-IS DISPLAY	
13.1.	RUN TIME DISPLAY	
FIGUR		
FIGUR	E 20	
14		24
14. (CONFIGURATION INSTRUCTIONS FOR FIELDBUS I ARAMETERS	
15		24
15.	CALIBRATION INSTRUCTIONS	34
15.	CALIBRATION INSTRUCTIONS Enter Calibration (Menu Level)	
15. 15.1. FIGUR	CALIBRATION INSTRUCTIONS Enter Calibration (Menu Level) E 21	
15. (15.1. FIGUR FIGUR	CALIBRATION INSTRUCTIONS	
15. 15.1. FIGUR FIGUR 15.2. FIGUR	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) F 23	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23 AUTOMATIC CALIBRATION PROCEDURE (ACAL).	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23 AUTOMATIC CALIBRATION PROCEDURE (ACAL) E 24	
15. 15.1. FIGUR 15.2. FIGUR 15.3. FIGUR 15.4.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23 AUTOMATIC CALIBRATION PROCEDURE (ACAL) E 24 MANUAL CALIBRATION (MCAL)	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23 AUTOMATIC CALIBRATION PROCEDURE (ACAL) E 24 MANUAL CALIBRATION (MCAL) E 26	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22	
15. 15.1. FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. EXEMPTION	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5. 15.6. FIGURI	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22	
15. 15.1. FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGURI 16.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21	
15. 15.1. FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5. 15.6. FIGURI 16.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22	
15. 15.1. FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGUR 16.1. 16.2.	CALIBRATION INSTRUCTIONS	
15. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGUR 16. 16.1. 16.2. 16.3. 16.4	CALIBRATION INSTRUCTIONS	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGUR 16.1. 16.2. 16.3. 16.4.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL)	
 15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5. 15.6. FIGURI 16. 16.1. 16.2. 16.3. 16.4. 17. 	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL)	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5. 15.6. FIGURI 16. 1 16.1. 16.2. 16.3. 16.4. 17. 1	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL)	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGUR 16. 1 16.1. 16.2. 16.3. 16.4. 17. 1 17.2.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21 E 22 CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23 AUTOMATIC CALIBRATION PROCEDURE (ACAL) E 24 MANUAL CALIBRATION (MCAL) E 26 EXITING CALIBRATION. (MCAL) E 26 EXITING CALIBRATION (MCAL) E 26 EXITING CALIBRATION MCAL) E 27 DESCRIPTION OF MENUS MENU 1: ACAL (AUTOMATIC CALIBRATION) MENU 1: ACAL (AUTOMATIC CALIBRATION) MENU 2: MCAL (MANUAL CALIBRATION) MENU 2: MCAL (MANUAL CALIBRATION) MENU 3: COFG (CONFIGURATION) MENU 4: STRO (MANUAL OVERRIDE OF INPUT SIGNAL) DESCRIPTION OF FUNCTIONS LO	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGUR 15.5. 15.6. FIGUR 16. 1 16.2. 16.3. 16.4. 17. 1 17.1. 17.2. 17.3. 17.4	CALIBRATION INSTRUCTIONS	
15. 15.1. FIGUR FIGUR 15.2. FIGUR 15.3. FIGUR 15.4. FIGURI 15.5. 15.6. FIGURI 16. 16.1. 16.2. 16.3. 16.4. 17. 17.1. 17.2. 17.3. 17.4. 17.5.	CALIBRATION INSTRUCTIONS ENTER CALIBRATION (MENU LEVEL) E 21. E 22. CONFIGURATION INSTRUCTIONS FOR POSITIONER PARAMETERS (COFG) E 23. AUTOMATIC CALIBRATION PROCEDURE (ACAL) E 24. MANUAL CALIBRATION (MCAL) 26. EXITING CALIBRATION (MCAL) 27. DESCRIPTION OF MENUS MENU 1: ACAL (AUTOMATIC CALIBRATION) MENU 1: ACAL (AUTOMATIC CALIBRATION) MENU 2: MCAL (MANUAL CALIBRATION) MENU 2: MCAL (MANUAL CALIBRATION) MENU 3: COFG (CONFIGURATION) MENU 4: STRO (MANUAL OVERRIDE OF INPUT SIGNAL). DESCRIPTION OF FUNCTIONS LO HI PID SNSR. TRND.	

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

17.6	. FLOW	
17.7	. Түре	
17.8	5. FLOP	
17.9	OPSP	45
17.1	0. CLSP	45
17.1	1. EDB	45
17.12	2. ADJS	46
17.1	3. OP	46
17.14	4. CLs	46
18.	ERROR CODES	47
ABB	REVIATION	
INDI	ICATION	
4.0		
19.	CHANNELS	47
19.1	. ANALOG CHANNELS	47
19.2	CHANNEL ERRORS	
19.3	AVAILABLE ANALOG INPUT CHANNELS	
Сна	ANNEL	
Сна	ANNEL NAME	
Сна	ANNEL DESCRIPTION	
19.4	AVAILABLE ANALOG OUTPUT CHANNELS	
Сна	ANNEL	
Сна	ANNEL NAME	
Сна	ANNEL DESCRIPTION	
20.	CONDITIONALS	
20.		10
21.	MODE	
21.1	. SUPPORTED MODES AND ENUMERATIONS:	
NUM	MERICAL VALUE	
ENU	JMERATIONS	
22	συσράστες μάδες αν αι άρχ τναε	51
44.	SUFFORTED MODES DI BLOCK TIFE	
22.1	. ANALOG OUTPUT BLOCK SUPPORTED MODES	51
NUM	MERICAL VALUE	51
ENU	JMERATIONS	51
22.2	ANALOG INPUT BLOCK SUPPORTED MODES	51
NUM	MERICAL VALUE	
ENU	JMERATIONS	51
22.3	TRANSDUCER BLOCK SUPPORTED MODES	51
NUM	MERICAL VALUE	
ENU	JMERATIONS	
22.4	RESOURCE BLOCK SUPPORTED MODES	
NUM	MERICAL VALUE	
ENU	JMERATIONS	
23	STATUS	52
24		50
24.	KEADBACK	
25.	FAULT STATE	53
NUM	MERICAL VALUE	
Enu	IMERATION	54
26.	RESOURCE STATE	54
26.	RESOURCE STATE	54
26. NUM	RESOURCE STATE	54

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

ENUMERATION DESCRIPTION	54 54
27. BLOCK_ERROR	55
NUMERICAL VALUE	55
ENUMERATION	
28. WESTLOCK SPECIFIC PARAMETERS	56
28.1. BLOCK ALARMS ACTIVE	56
NUMERICAL VALUE	
ENUMERATION	56
DESCRIPTION	56
28.2. Start_Up_State	57
NUMERICAL VALUE	57
ENUMERATION	
28.3. FAULT_STATE	
NUMERICAL VALUE	
28.4 DISCRETE STATE	
NIMERICAL VALUE	58
ENUMERATION	
28.5. Action_Element	
28.6. Cycle_Time_History	59
29. BLOCK PARAMETER TABLES	59
29.1. TRANSDUCER BLOCK PARAMETER DESCRIPTIONS	
29.2. Resource Block Parameters	63
30. TRANSDUCER BLOCK VIEWS	66
30.1. ANALOG TRANSDUCER BLOCK VIEWS	
30.2. HEALTH TRANSDUCER BLOCK VIEWS	67
31. CONFIGURING THE DEVICE FOR OPERATION	69
31.1. TRANSDUCER BLOCK	
31.2. Resource Block	70
APPENDIX A	71
APPENDIX B	
APPENDIX C	74

2. Definitions, Acronyms and Abbreviations

This section contains definitions to all acronyms or abbreviations used in this document.

Table 1	- Definitions and Acronyms
HW	Hardware
SW	Software
DCS	Distributed Control System
DD	Device Description
AI	Analog Input
AO	Analog Output
PID	Proportional Integrative Derivative
DI	Discrete Input
DO	Discrete Output
FB	Function Block
FF	Foundation Fieldbus
RB	Resource Block
TB	Transducer Block
Rout	Remote-Output mode
RCas	Remote-Cascade mode
Cas	Cascade mode
Auto	Automatic mode
Man	Manual mode
LO	Local Override mode
IMan	Initialization Manual mode
OOS or	Out Of Service mode
O/S	

Table 2 - Abbreviations	
fieldbus	Foundation Fieldbus

3. Reference

- ICoT/SmartCal FOUNDATION FIELDBUS Interface 11 October 2002
- Fieldbus Foundation FOUNDATION Specification Function Block Application Process, Part 1 (FF-890)
- Fieldbus Foundation FOUNDATION Specification Function Block Application Process, Part 2 (FF-891)
- Fieldbus Foundation FOUNDATION Specification Transducer Block Application Process, Part 1 (FF-902)
- Fieldbus Foundation FOUNDATION Specification Transducer Block Application Process, Part 2 (FF-903)
- Fieldbus Foundation FOUNDATION™ Specification Common File Format (FF-103)
- Fieldbus Foundation FOUNDATION™ Specification Device Description Language (FF-900)
- IEEE Software Engineering Standards

4. Device Overview

4.1.About FOUNDATION FieldbusTM

FOUNDATION Fieldbus is an open networking standard which provides an open specification for both the control application and the communication on the bus. The specification grew out of work done by the IEC and the ISA to define an international fieldbus standard.

Two areas of application were defined and labeled as H1 and H2. The H1 specification was intended as a digital replacement for standard 4-20mA field instrumentation and later referred to as process automation. The H2 specification was intended to extend the H1 concept to control and data collection systems and later referred to as manufacturing automation. Development of the H2 specification was halted in 1998 in favor of the High Speed Ethernet (HSE) specification. The final H1 specification¹ was released in August of 1996 while the final specification for HSE² was released in April of 2000.

The Fieldbus Foundation[™] oversees the FOUNDATION Fieldbus specification and conformance testing of FOUNDATION Fieldbus products. It is open to any manufacturer or user of this protocol with a worldwide membership of over 100 companies.

FOUNDATION Fieldbus is a powerful networking solution that reduces the cost and time required to install and wire industrial automation devices. A single Fieldbus Intellis System will accommodate up to 32 valves and 192 discrete I/O points. FF has the capability to interconnect complex and simple devices from multiple vendors on the same network. FOUNDATION Fieldbus supports true distributed control allowing for configuration of devices for local control in the field, in the host or both.

4.2.Fieldbus Foundation[™] Conformance Documentation, CFF and DD Availability

The Westlock 5400 IS FF ICoT is a Fieldbus Foundation registered device having successfully completed the required conformance tests. The Device ID is 4668472000B0F585FhgTestBlock0037 and the CFF and DD are downloadable from the Foundation's website at www.fieldbus.org or at www.westlockcontrols.com

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

¹ Part 1, FF-890 and Part 2, FF-891

² FF-044-1.0-1

Table 3 - Fieldbus Foundation [™] Conformance Documentation		
Manufacturer	Westlock Controls	
Model	ICoT Valve Controller 5400-IS	
Category	Final Control Element	
Туре	IS Pneumatic Positioner	
Tested Function Blocks	1xAI(S), 1xAO(s), 1xPID(s)	
Other Blocks:	$2 \mathrm{xTB}(\mathrm{c})$	
H1 Profile Class	31PS	
H1 Device Class	Basic	
Test Camp. Number	IT019200	
MANUFAC_ID	0x574343	
DEV_TYPE	0x1100	
DEV_REV	0x01	
ITK Version	4.51	

4.3. Host System Compatibility Documentation

- 4.3.1. Allen-Bradley ProcessLogix
 - FF ICOT passed all stress and interoperability testing and certified for installation in Allen-Bradley ProcessLogix systems
 - For Allen-Bradley registered DD/CFF files download at: <u>http://www.AB.com</u>

4.4. Intrinsically Safe Design Criteria and Agency Approvals

The Westlock 5400-IS FF ICOT is designed in accordance with the criteria defined in FM 3615. Agency Approvals are listed in Table 4.

The FF ICOT 5400-IS requires the use of an agency approved IS barrier. For information on the barrier used by Westlock Controls Corp. and to obtain the agency approvals listed above, appropriate network architecture, entity parameters and segment device limits refer to *Control Drawing WD-11704*, *Installation and Reference for Entity Parameter IS Installation or WD-11835 FISCO IS Installation* located in Appendix A of this document.

Table 4 – Hazardous Ratings		
FM	Intrinsically Safe	Non-Incendive
	Class I, II & III, Groups A-	Class I, Groups A-D
	G, Divisions 1, T4 and	Class II & III, Groups F-G
	Class I, Zone 0 AEx ia IIC,	Division 2
	T4	

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

4.5. Westlock FOUNDATION Fieldbus 5400-IS ICoT Positioner

4.5.1. Description of ICoT Positioner

The 5400-IS FF ICoT Smart Valve Positioner is an electro-pneumatic servo system that continuously controls the position of a valve based on the fieldbus input signal. The ICoT senses valve position via a non-contact Hall Effect sensor and controls valve position through a current to pressure transducer

The ICoT is a two wire, polarity insensitive instrument that receives both signal and power from the bus. Current consumption of the ICoT is 25 mA with an operating voltage of 9 - 35 Vdc.

The positioner has a local LCD display which indicates valve position, set-point in percentage open, calibration status, alarms status and whether the ICoT is in local or fieldbus control. The ICoT has the capability to self monitor operation. If a failure condition occurs, an error message is displayed on the local LCD display and communicated to the Host system via fieldbus.

Accurate measurements of valve stem position, input signal, actuator pressure and travel time are recorded during normal operation. With the ICoT's internal trending capability, information for control valve signature generation is developed for use in predictive maintenance.

There are several accessories that can be integrally supplied with the ICoT. Among these are an opto-isolated discrete output for alarm notification to external hardware, hermetically sealed non-contact limit sensors and a fugitive emissions monitor.

For data exchange to occur on the bus, the linking device or other interface automatically programs each fieldbus device connected to the fieldbus network with a unique address between 16 and 247.

It is possible to exchange or add devices to the network during normal operations without interfering with communications to other nodes.

Use of any standard 4-20 mA instrumentation cable (twisted shielded pair) for trunk and drops is permissible. For maximum trunk and drop distances the use of "Type A" cable³ is required. For a more detailed treatment of FOUNDATION Fieldbus physical media requirements refer to **IEC 1158-2** and Fieldbus Foundation's document "Fieldbus Installation & Planning Guide" (Cat. No. AG-165). For IS installations refer to Fieldbus Foundation's document "31.25 kbit/s Intrinsically Safe Systems" (Cat. No. AG-163).

4.5.2. Specifications

Table 5 – Electro-pneumatic		
Signal	two wire FOUNDATION Fieldbus	
Voltage	9 – 35 Vdc	
Pressure:	Low: 15 - 45 psi	
	High: 40 - 120 psi	
Position Feedback	Magnetic (Non-Contact)	

Table 6 – Pneumatic and Mechanical		
Flow Rate	Low: 8.0 scfm @ 25 psi	
	High: 16.2 scfm @ 90 psi	
Pressure	Low: 0 to 45 psi	
	High 0 to 120 psi	
Actuator	Single Acting or Double Acting	
Stroke	Linear: 0.25 to 24 inches	
	Rotary: 0 to 95 Degrees	

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

³ See IEC 1158-2 Physical Layer Standard, paragraph 11.7.2

Table 7 – Performance		
Resolution	2% Full Travel	
Linearity	Rotary 0.5% Full Scale	
	Linear 1% Full Scale	
Hysteresis	0.2% Full Scale	
Repeatability	0.2% Over One Hour	
Operating Temp	-40°C to 85°C (-40°F to 185°F)	
Thermal Coefficient	2% / 100°C	
Air Consumption	Low: 0.003 scfm @ 25 psi	
	High: 0.008 scfm @ 90 psi	
Table 8 – Enclosure		
Material	Engineered Resin	
Class of Equipment	NEMA type 4	
Weight	7.2 Pounds	
Air Connections	1/4" NPT	
Conduit Connections	Standard:1/2" NPT	

4.6.Principal of Operation

Unlike conventional positioners, the 5400-IS FF ICoT develops valve position feedback without the need for linkages, levers, or rotary and linear seals. Position sensing is performed by non-contacting means through the utilization of a solid state sensing element. This innovation insures a position feedback signal of high resolution with negligible hysteresis. Precision feedback coupled with state of the microprocessor controlled electronics enables the ICoT to deliver exceptional linearity, and repeatability in both rotary and linear applications (See <u>Table 7</u>).

Optional:M20

5. FOUNDATION FieldbusTM Communications Overview

FOUNDATION Fieldbus communications protocol is an industry proven international standard (IEC 61158) designed for use in the process industry. Features include multi-drop capabilities (as many as 32 devices per segment), extended trunk length, single loop integrity, "control in the field", power and communication on a shielded twisted pair network, and compatibility with intrinsically safe networks. A key feature of the FF protocol is the ability to select where control of the process is situated - in the host, in the field, or in various combinations of both locations. The Fieldbus Foundation defined application layer is based on Function Blocks. Function Blocks are structures with defined behavior used to represent different types of functions that the device performs. **Figure 1** below illustrates a simple control loop with an AI FB in a level transmitter linked to a PID FB whose signal is controlling the position of the control valve via the DO FB.

Both the PID and DO reside within the control valve.

Figure 1 – Linked Function Blocks

The parameters of these blocks follow a standard framework, but manufacturers are free to enhance standard features and add additional functions as necessary. Every FOUNDATION Fieldbus device has a Resource Block, Function Blocks, and possibly a Transducer Block.

Once the hardware of a Fieldbus device is configured, Fieldbus communication is used to configure the transducer block parameters. The desired transducer functionality is associated with a specific function block via a Channel. A Channel links real world HW with the functionality of associated FB(s) as shown in **Figure 2**.

Figure 2 – Channel Linking HW via TB Configuration with FB(s)

The host system's Engineering Station is used to link the function blocks together to create a control application that can be downloaded to the devices on the H1 segment as illustrated in **Figure 3**.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

Figure 3 – Download of Control Application to Field Device

FOUNDATION Fieldbus provides the user with standardized calibration, diagnostic, and status data that enables users of Fieldbus Foundation registered products to benefit from the advantages of "smart" instruments.

5.1.Channels

Channels are used to connect a Function Block to hardware functionality in the Transducer Block. **There can be only one physical output or input per Channel**. Multiple Channels may reference the same physical output or input, though not at the same time.

The Analog Input Channel is the analog information the FF ICoT-IS hardware provides to the Fieldbus AI Function Block. The FF ICoT-IS analog input signal is the actual position of the actuator. Analog Input Channels are listed in <u>Table 17</u>.

The Analog Output Channel is the analog information the FF ICoT-IS hardware receives from the Fieldbus AO Function Block. The FF ICoT-IS analog output signal is the setpoint for the actual position of the actuator. Analog Output Channels are listed in <u>Table 18</u>.

Discrete Input Channels are the discrete information the FF ICoT-IS hardware provides to the Fieldbus DI Function Blocks. FF ICoT-IS discrete inputs may come from an internal event such as an alarm or a limit switch closing or opening or from an external event via one or both of the

Auxiliary inputs, such as a High Level switch. Discrete Input Channels are always mapped to Discrete Input function blocks. Discrete Input Channels are listed in <u>Table 19</u>.

Discrete Output Channels are the discrete information provided to the FF ICoT-IS hardware from the Fieldbus DO Function Blocks. Discrete Output Channels are mapped to Discrete Output function blocks on the Fieldbus. Discrete Output Channels are listed in <u>Table 20</u>.

5.2.Analog Input

An Analog Input block takes the manufacturer's analog input data, selected by channel number, and makes it available to other function blocks for use in control. The AI takes the feedback of the actual valve position and makes it available to the Fieldbus for use in control.

5.3.Analog Output

An Analog Output block converts the value received across the Fieldbus to a positioning signal for the hardware in the device. The AO will send a control signal to the hardware based upon the channel configuration selected. This will drive the value to the desired position.

5.4.Discrete Input

A Discrete Input block takes the manufacturer's discrete input data, selected by channel number, and makes it available to other function blocks for use in control. The DI takes a physical state change such as push button, limit switch, or alarm generation and makes it available to the Fieldbus for use in control.

5.5.Discrete Output

A Discrete Output block converts the value received across the Fieldbus to something useful for the hardware in the device. The DO will send a control signal to the hardware based upon channel configuration selected. The hardware may turn a motor on or off, open or close a valve, or sound a buzzer, etc.

6. Special Features

6.1.Non-Contact Position Feedback

To provide consistently accurate performance all linkages, levers and connecting rods, from the positioner to the control valve have been eliminated from the design. Valve position sensing is performed totally by non-contacting means based upon the characterization of flux strength as a function of position.

Rotary Valves Actuator Shaft Magnet Magnet Sensor

6.2.Remote Position Control

Since valve position feedback to the FF ICoT-IS positioner is accomplished by non-contacting means, the FF ICoT-IS has the unique ability to be mounted remotely (up to a distance of 50 feet) from the device it is controlling. In the event the control valve is located in high vibration, extreme temperature or extremely corrosive environments, the noncontact position feedback feature allows for remote placement of the positioner.

6.3.Local LCD

The FF ICoT-IS positioner is fully configurable via Fieldbus or the 3-button keypad local interface. The local dot matrix LCD provides a multitude of onsite diagnostic information as well as calibration and operation status. The display also indicates whether the valve is in local or Fieldbus control.

While the valve is being controlled by the positioner, and there is a nonzero error signal, the displayed information will alternate between setpoint and position as a percentage. Each value is displayed for a period of two seconds. Once the setpoint and valve position agree to within less than 0.5%, the display will only show position. The range of values displayed is from 0.0% to 100.0%. Displayed resolution is in 0.1% increments, however, internal calculations are maintained at higher precision.

6.4.On-Board Sensors

The FF ICoT-IS positioner has the capability to self monitor its operation. If an error or failure condition occurs, the host system is updated as to the status of the device as well as being displayed on the local LCD. Note: Error codes are denoted on a label affixed to the LCD flip-up protective cover. For a listing of Error codes see also <u>Table 16</u>.

6.5.Local Keypad

All positioners are provided with a 3-button local control interface. All calibration routines, zero and span adjustments, manual PID and gain settings as well as valve characterization adjustments can be initiated via the local interface.

6.6.Intelligent Calibration via FF

The parameters of the FF ICoT-IS positioner are fully accessible via Fieldbus. Manual or Automatic calibration can be initiated via the bus and parameters for altering internal servo loop tuning are fully configurable. In this manner, positioner performance may be optimized with a wide combination of valves and actuators via Fieldbus.

6.7.Negligible Bleed

Designed to consume the least possible amount of control air at steady state, the FF ICoT-IS 5400 Series positioner can greatly reduce the air consumption of your process and reduce the demand on instrument air compressors. To increase reliability, the ICoT employs a patented lapped spool and floating sleeve design. This balanced construction relies on an air bearing which eliminates any metal to metal contact. See <u>Table 7</u> for specifications.

6.8.Predictive Alarming

There are device specific operational alarms.

- The **Cycle Limit Alarm** is activated when the time between the setpoint command being issued and the valve reaching the setpoint exceeds the time limit set during configuration of the **Cycle_Limit_Alarm** parameter (located in the TB).
- The **Out of FF Control** alarm is activated when the FF ICoT-IS has determined that it is unable to respond to a setpoint command from the bus, such as during a local calibration procedure.

These conditions can trigger Fieldbus alarms on the bus that can be handled via the standard Fieldbus alarm mechanism. For critical applications the Maskable Signal described in Section 5.11 can be used to link the alarms directly to a DI. This allows the alarm state to be linked directly to another FB for immediate action in the process.

6.9. Preventative Maintenance Alarming

Maintenance alarms can be generated when the user configured Cycle Count Limit is reached. The device will have a continuous cycle count for each change in setpoint command. The **Cycle_Count_Limit** parameter (located in the TB) is set during configuration. The maintenance alarm will be generated when **Cycle_Count** accumulates a number larger than the associated **Cycle_Count_Limit**. This condition can trigger an Fieldbus alarm on the bus that can be handled via the standard Fieldbus alarm handling.

7. General Features

- Fieldbus FoundationTM Conformant Stack and hardware
- Intrinsically Safe
- Solid State Hall Effect position Sensor
- User configurable custom alarms
- Transducer with diagnostic features
- 2 wire device, polarity insensitive
- Available Blocks: 1x Resource Block
 - 2x Transducer Blocks
 - Analog Transducer Block
 - Positioner Specific Transducer Block
 - 1x AO Block
 - 1x AI Block
 - 1x PID Block
- 20 configurable VCR(s)
- Valve driver: electro-pneumatic servo
- Operating voltage: 9-32VDC
- Maximum voltage: 35VDC
- Maximum current consumption: 25 mA

8. Mounting the Positioner

Note IMPORTANT: If the FF ICoT-IS is already in the field mounted on an actuator and valve, please follow the field wiring instructions in <u>Section 9</u>.

Warning WARNING: The FF ICoT-IS should always be handled with care when the cover is removed and wired to an electrical power source.

8.1.Mounting Positioner on a Rotary Actuator

8.1.1. Mount bracket and inner beacon coupler to actuator. If actuator shaft has a tapped hole, fasten using proper flat head screw. If actuator does not have a tapped hole, fasten using set screws on side of coupler (See Figure 4 below).

- 8.1.2. Press fit the inner beacon to the inner beacon coupler. The inner beacon needs to be properly oriented. Use the symbols on the top of the inner beacon to mount as shown in Condition 1 or Condition 2 (See Figures 5 and 6 below).
- 8.1.3. Condition 1 and Condition 2 show the placement of the inner beacon with respect to the positioner housing while the actuator is in the fail position.

Condition 1 – Actuator fails in a clockwise direction.

Spring Return

Output Port 2 is plugged Output Port 1 is piped to turn the actuator counter clockwise

Double Acting

Output Port 2 is piped to turn the actuator clockwise Output Port 1 is piped to turn the actuator counter clockwise

▲ Placed at 6:00

Placed at 3:00

Condition 2 – Actuator fails in a counter clockwise direction.

Spring Return

Output Port 2 is plugged Output Port 1 is piped to turn the actuator clockwise

Double Acting

Output Port 2 is piped to turn the actuator counter clockwise Output Port 1 is piped to turn the actuator clockwise

- ⊥ Placed at 9:00
- Placed at 6:00

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

8.2. Mounting Remote Positioner on a Rotary Actuator

- 8.2.1. Mount bracket and inner beacon coupler to actuator as described in Section 7.1.1.
- 8.2.2. Press fit the inner beacon to the inner beacon coupler. The inner beacon needs to be properly oriented. Use the symbols on the top of the inner beacon to mount as shown in Condition 1 or Condition 2 (See Figure 8 and 9).
- 8.2.3. Condition 1 and Condition 2 show the placement of the inner beacon with respect to the position sensor housing while the actuator is in the fail position.
- 8.2.4. Mount positioner at a remote location, wire the positioner sensor back to the positioner using the cable provided (See Figure 7).

Figure 7

8.2.5. For wiring instructions for the remote sensor housing see <u>Section 8.3</u>.

Condition 1 – Actuator fails in a clockwise direction.

Spring Return

Output Port 2 is plugged Output Port 1 is piped to turn the actuator counter clockwise

Double Acting

Output Port 2 is piped to turn the actuator clockwise Output Port 1 is piped to turn the actuator counter clockwise

▲ Placed at 6:00

Placed at 3:00

Condition 2 – Actuator fails in a counter clockwise direction.

Spring Return

Output Port 2 is plugged Output Port 1 is piped to turn the actuator clockwise

Double Acting

Output Port 2 is piped to turn the actuator counter clockwise Output Port 1 is piped to turn the actuator clockwise

- ⊥ Placed at 9:00
- Placed at 6:00

8.3. Mounting Positioner on a Linear Actuator

- 8.3.1. Mount the magnet assemble to the stem of the actuator. A coupler block normally is needed to extend the magnet assembly outside the yoke area and into the sensing range of the Hall Effect Sensor.
- 8.3.2. Fasten the mounting bracket to the actuator.
- 8.3.3. Mount the positioner to the mounting bracket. The positioner should be mounted so the Hall Effect Sensor unit of the positioner is centered between the limits of the magnetic assembly's stroke. After mounting the positioner, the magnet assembly should be within 1/8" of the back of the positioner (1/16" is ideal). (See Figure 10).

ñ

Note NOTE: For Fisher actuators model 657 and 667, sizes 34 - 70, Westlock Controls supplies a slotted mounting kit. This will allow the user to easily center the positioner sensor between limits of the magnet assembly's stroke.

- 8.3.4. To Center the Positioner
- 8.3.5. Stroke the actuator to its upper limit and place a mark on the actuator's yoke that lines up with the red arrow on the magnet assembly.
- 8.3.6. Stroke the actuator to its lower limit and place a mark on the actuator's yoke that lines up with the red arrow on the magnet assembly.
- 8.3.7. Place a third mark on the yoke centered between the upper and lower limit marks.
- 8.3.8. Lastly, mount the positioner to the bracket so that the positioner sensor (nose) of the ICoT lines up with the midpoint mark (See Figure 11).

Figure 11

8.4. Mounting Remote Positioner on a Linear Actuator

- 8.4.1. Mount the magnet assembly and bracket to the actuator as described in Section 7.3.1.
- 8.4.2. Mount the position sensor housing so that the conduit entry faces away from the diaphragm or cylinder (See Figure 12)

Figure 12

Note NOTE: For Fisher actuators model 657 & 667 sizes 34 thru 70, Westlock Controls supplies a slotted mounting kit, to ease the mounting process. This will allow the user to easily center the positioner sensor between the limits of the magnet assembly's stroke.

- 8.4.3. Mount positioner at a remote location, wire the positioner sensor back to the positioner using the cable provided (See Figure 13).
- 8.4.4. For wiring instructions for the remote sensor housing see <u>Section 8.3</u>.

Figure 13

9. Pneumatic Connections

9.1. Single Acting Actuator (Spring Return):

9.1.1. For single acting actuators Outlet Port 2 is to be plugged. Outlet Port 1 is to be piped to the actuator inlet port that acts against the spring. An increase in signal will cause the pressure to increase in Outlet Port 1 of the positioner (Refer to Figure 14).

9.2. Double Acting Actuator (Double Return):

9.2.1. For double acting actuators Outlet Port 2 is piped to drive the actuator to the fail position. Outlet Port 1 is piped to drive the actuator away from the fail position. An increase in signal will cause the pressure in Outlet Port 1 of the positioner to increase and the pressure in Outlet Port 2 to decrease (Refer to Figure 14).

- 1. Single Acting/Spring Return (Plug Outlet Port 2) increasing signal causes pressure to increase in Outlet Port 1.
- Double Acting/Double Return (Pipe Outlet Port 2 to drive actuator towards the desired failure direction) increasing signal causes pressure to decrease in Outlet Port 2 and pressure to increase in Outlet Port 1.

Notes:

1. On loss of power pressure fails to Outlet Port 2.

Figure 14

10.Wiring Instructions for the FF ICoT-IS

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

10.1. General Wiring Instructions

WARNING: TO PREVENT IGNITION OF HAZARDOUS

ATMOSPHERES, **ALWAYS** check the enclosure nameplate to confirm the agency approval ratings coincide with the application.

- All wiring must be in accordance with National Electrical Code (ANSI-NFPA-70) for the appropriate area classifications. For agency approved barriers, wiring and installation guidelines for the FF ICoT-IS, refer to *Control Drawings WD-11704, Installation and Reference for IS Installation or WD-11835 FISCO IS Installation* located in <u>Appendix A</u> of this document.
- 2. When the FF ICoT-IS is installed in accordance with approved practices and safety barriers it is agency approved as Intrinsically Safe (Entity and FISCO, see Section 4.4) for service in Class I, II and III, Division 1, Groups A-G, T4 and Class I, Zone 0 AEx ia IIC, T4 hazardous locations.
- 3. The FF ICoT-IS enclosure, is approved for indoor/outdoor (NEMA type 4, 4X) applications.
- 4. The wiring diagram for the FF ICoT-IS is shown in Figure 15 below. The wiring diagram for your unit is also shown on the inside of the enclosure cover.
- 5. Replace the electronics housing cover or junction housing cover.
- 6. Unit is now ready for automatic operation. If any assistance is required, please contact Westlock Controls Corp. (See <u>Appendix B</u>).

10.2. Connecting the FF ICoT-IS to the Bus

10.2.1. Remove positioner cover.

10.2.2. Locate terminal strip and carefully disconnect (See Figure 15).

10.2.3. Connect the brown (+) and blue (-) bus wires to the pins marked (+) and (-).

Note This bus input wiring for this device is polarity insensitive.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

Tech-347

Figure 15

10.3. Connecting the FF ICoT-IS Remote Position Sensor Housing

10.3.1. Connect the remote sensor housing cable as shown in Figure 16 below.

Figure 16

11.Switch Adjustment on Rotary ICoT

- Open the actuator to the desired extreme.
- Loosen magnetic trigger bolt #1 per Figure 17.
- Slide trigger bolt #1 beneath the first switch and tighten with wrench.
- Operate the actuator to the opposite extreme.
- Loosen magnetic trigger bolt #2.
- Slide trigger bolt #2 beneath the second switch and tighten with wrench.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

Figure 17

12.FOUNDATIONTM Fieldbus Supported Topologies

Figure 18

13.FF ICoT-IS Display

13.1. Run Time Display

13.1.1. The run time display indicates the following parameters as shown in Figure 19.

- 1. Setpoint
- 2. Valve position
- 3. Indication of positioner in Fieldbus control or not in Fieldbus control
- 4. Error type indicated if present

Figure 19

13.2. Calibration Display

- 13.2.1. The calibration display indicates the following parameters as shown in Figure 20.
 - 1. Setpoint
 - 2. Valve position
 - 3. Indication of positioner in Fieldbus control or not in Fieldbus control
 - 4. Error type indicated if present

Figure 20

14.Configuration Instructions for Fieldbus Parameters

See <u>Section 28</u> for a detailed list of configurable parameters.

15.Calibration Instructions

15.1. Enter Calibration (Menu Level)

Figure 21

15.1.1. Enter the calibration routine by pressing and holding the **CAL** button.

15.1.1.1. Continue to hold the **CAL** button until **ACAL** appears on the LCD.

15.1.2. **ACAL** (Auto Cal Menu) is the first of four menus. By pressing the down arrow button you can cycle through the four menus.

15.1.2.1. The remaining three menus are:

- MCAL (Manual Cal Menu)
- **Cofg** (Configuration Menu)
- Stro (Manual Position Override Menu).

The menu level is shown in Figure 22 below.

Return to Calibration InstructionsReturn to Table of Contents

Figure 22

15.2. Configuration Instructions for Positioner Parameters (Cofg)

- 15.2.1. From the menu level press the down arrow button until the **Cofg** (Configuration Menu) is shown on the display (Configuration Routine shown in Figure 23 below).
- 15.2.2. Enter this menu and change any of the parameters if other than the factory settings are required. The factory settings are highlighted in blue.

Figure 23

Return to Calibration Instructions

Return to Table of Contents

15.3. Automatic Calibration Procedure (ACAL)

- 15.3.1. The Automatic Calibration (ACAL) performs several self-adjustments, as well as a zero calibration, a span calibration, and tunes the positioners PID gain settings.
- 15.3.2. Enter and start the Automatic Calibration from the Menu level. From the menu level press the down arrow button until **ACAL** is shown on the display (**ACAL** Routine shown in Figure 24 below).

Return to Calibration InstructionsReturn to Table of Contents

15.3.3. Proceed to Exiting Calibration or Perform Advanced Calibration.

15.4. Manual Calibration (MCAL)

- 15.4.1. At this point the calibration of the positioner is complete. The Automatic Calibration that was performed in Section 15.3 is adequate for most applications. If advanced calibration is not required proceed to Section 15.5 to exit calibration.
- 15.4.2. If the user requires the advanced settings to fine tune the positioner he may proceed with the remainder of this step and perform adjustments and calibrations in the Manual Calibration Menu (**MCAL**).
- 15.4.3. From the menu level press the down arrow button until **MCAL** is shown on the display (**MCAL** Routine shown in Figure 26 below).

Figure 26

Return to Calibration Instructions

Return to Table of Contents

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

15.5. Exiting Calibration

- 15.5.1. To exit calibration mode and return to normal operation use the up arrow key as follows:
 - 15.5.1.1. If the positioner is at Menu level in the calibration, as determined by LCD displaying a Menu name only (MCAL, etc.), press the up arrow key once to exit CAL mode.
 - 15.5.1.2. If the positioner is at function level in the calibration, as determined by LCD displaying a function and Menu name only (MCAL Lo, etc.), press the up arrow key once to enter the Menu level and once more to exit CAL mode.
 - 15.5.1.3. The LCD will display "OK" when positioner is out of Menu level.

Attention NOTE: When a calibration function is initiated, the user must wait until the function's calibration is complete before being able to exit calibration. The **up arrow** key can be used, as described above, to move to the Menu level and then to exit **CAL** mode only after the calibration procedure is complete.

15.6. Manual Override of Input Signal via On-Board Keypad (Stro)

The positioner has a feature which allows the operator to override the FF control signal and change valve position from the keypad. This is done from the **Stro** (**Manual Override-Stroke Menu**). Enter calibration as described in section 15.1 and use the down arrow button to cycle to the **Stro** menu. Enter this menu and control the position of the valve as shown below.

Figure 27

Return to Calibration Instructions

Return to Table of Contents

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

Tech-347

16.Description of Menus

The calibration functions of the positioner are organized into four menus as shown in Table 9.

Table 9 – Calibration Menus	
Abbreviation	Menu
ACAL	Automatic Calibration
MCAL	Manual Calibration
Cofg	Positioner Configuration
Stro	Stroke – manual override of input signal

16.1. Menu 1: ACAL (Automatic Calibration)

The positioner will automatically perform a shallow (input current independent) calibration in the sequence listed in Table 10.

Entering this menu allows you to initiate an approximately 6.5 minute self-calibration function.

Table 10 – ACAL Calibration Functions	
Abbreviation	Function
Snsr	Hall Effect Sensor Calibration
Trnd	Transducer Calibration
Lo	Low (Zero) Calibration
Hi	High (Span) Calibration
Auto	Automatic PID Tuning

16.2. Menu 2: MCAL (Manual Calibration)

Entering this menu allows you to access the calibration functions listed in Table 11 via the keypad.

Table 11 – MCAL Calibration Functions	
Abbreviation Function	
Lo	Low (Zero) Calibration
Hi	High (Span) Calibration
PID	Proportional, Integrative and Derivative Gain
	Adjustment
Snsr	Hall Effect Sensor Calibration
Trnd	Transducer Calibration
Auto	Automatic PID Tuning

16.3. Menu 3: Cofg (Configuration)

Entering this menu allows you to access the configuration functions listed in Table 12 via the keypad.

These functions allow display, speed and valve characteristic changes from factory default settings.

Table 12 –Cofg Calibration Functions		
Abbreviation Function		
Flow	Positioner Output Flow Characteristics	
Туре	Positioner Recognition of Magnetic Feedback,	
	Rotary or Linear	
Flop	Positioner Fail Position, Open or Closed	
OPSP	Positioner Opening Speed Adjustment	
CLSP	Positioner Opening Speed Adjustment	

16.4. Menu 4: Stro (Manual Override of Input Signal)

Entering this menu allows you to access the stroking functions listed in Table 13 via the keypad.

These functions remove the positioner from FF control mode (input signal independent) and therefore allow override of the control signal.

Table 13 – Stro Calibration Functions	
Abbreviation	Function
Adjs	Local Adjustment of Positioner Setpoint Using
	Up/Down Keypad Arrows
OP	Open, Sets the Valve to the Full Open Position
CLS	Close, Sets the Valve to the Full Closed
	Position

17.Description of Functions

17.1. LO

This function serves to set the fail position of the actuator/valve. Initially during this calibration the valve is driven to the fail position (hard stop). The user will notice full pressure to Outlet Port 2 and zero pressure to Outlet Port 1 (see Figure 14).

After a short period of time pressure will increase in Outlet Port 1 and the valve will be driven to the fully energized position and then back to the fail position. After approximately 30 seconds pressure will again increase in Outlet Port 1 and the valve will be driven off of the hard stop (approx. 10% of full travel), and then driven back to the hard stop.

The calibration function is making note of the torques required to fully seat and un-seat the valve from the hard stop. At this point the user has the option to select the hard stop as low (zero) position or to select an arbitrary position as low (zero) position.

17.2. HI

This function serves to set the fully energized (full travel) position of the actuator/valve. Initially during this calibration the valve is driven to the fully energized (full travel) position (hard stop). The user will notice full pressure to Outlet Port 1 and zero pressure to Outlet Port 2 (see Figure 14).

After a short period of time pressure will increase in Outlet Port 2 and will be driven off of the hard stop (approx. 10% of full travel), and then driven back to the hard stop.

The calibration is making note of the torques required to fully seat and un-seat the valve from a hard stop. At this point the user has the option to select the hard stop as the high (span) position or to select an arbitrary position as the high (span) position.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

17.3. PID

The PID function allows the user to enter or change the PID settings of the positioner. This unction is most often used to fine tune the PID values obtained from the automatic calibration function (**ACAL**).

This function will allow the user to optimize the dynamic response of the positioner with respect to speed of response, overshoot and percent error by varying the appropriate gain settings.

The Proportional (PCAL) and Derivative (DCAL) gain settings can be varied incrementally on a scale from 1-20. The Integral (ICAL) gain setting can be varied incrementally on a scale from 1-5. The larger the number selected the higher the gain setting.

17.4. Snsr

The sensor calibration function calibrates the positioner's Hall-Effect circuitry. This is automatically done during the **ACAL** (Automatic Calibration) routine. The sensor calibration also shows up under the **MCAL** menu. This calibration only needs to be performed under the **MCAL** routine when the positioner is set-up in a new application and only if the **ACAL** routine is not performed.

17.5. Trnd

The purpose of this function is to calibrate the positioner's transducer. The transducer is calibrated on all new positioners at the factory; therefore this procedure does not need to be performed for a new positioner. Perform this calibration function only if a replacement transducer or electronic canister was installed in the positioner.

17.6. Flow

This function allows configures the flow characteristic of the positioner (**not to be confused with the flow characteristic of the valve**).

The options are **Lin** (Linear), **EP** (Equal Percentage) and **Opn** (Quick Opening). A **Lin** (Linear) positioner characteristic duplicates the inherent characteristic of the valve and is the most often used setting.

17.7. Туре

This function configures the positioner for the type of valve. The options are **rot** (Rotary) and **lin** (Linear). This setting needs to be done in order to configure the positioner to recognize the type of magnetic feedback being given to the positioner.

17.8. FLOP

This function allows the user to configure the positioner to match the failure method of the valve/actuator. The options are "**off**" or "**on**".

The "**off**" option is for fail closed applications and the "**on**" option is for fail open application.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 When "**off**" is chosen the LCD will read 0% at the zero (Lo Calibration) and 100% at the span (Hi Calibration). When "**on**" is chosen the LCD will read 100% at the zero (Lo Calibration) and 0% at the span (Hi Calibration).

17.9. **OPSP**

This function allows for the setting of the opening speed of the actuator/valve. The range is 1 thru 5. Setting 5 is the fastest opening speed and setting 1 is the slowest opening speed.

Table 14 – OPSP Settings	
Setting	Approximate % Dynamic Speed
1	20%
2	40%
3	60%
4	80%
5	100%

17.10. CLSP

This function allows for the setting of the closing speed of the actuator/valve. The range is 1 thru 5. Setting 5 is the fastest closing speed and setting 1 is the slowest closing speed.

Table 15 – CLSP Settings	
Setting	Approximate % Dynamic Speed
1	20%
2	40%
3	60%
4	80%
5	100%

17.11. EDb

This feature configures the positioner's operating deadband. The configuration options are "**off**" and "**on**". The positioner factory default setting is "**off**".

When the deadband feature is "**off**" it operates with nominal value of $\pm 0.3\%$ of full scale for deadband.

When the feature is turned "**on**", the deadband can be set using the up and down arrow buttons to a value from 1 to 20. The value 1 (*lowest deadband when turned* "**on**") has a deadband range of 1%, which is equivalent to a deadband of $\pm 0.5\%$. The value 20 (*highest deadband value*) has a range of 20%, which is equivalent to a deadband of $\pm 10\%$.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

17.12. Adjs

This function allows for the adjustment of the positioner to any position via the keypad. This function places the positioner in local control mode (input signal independent) and therefore allows override of the control signal.

Within this function there are **Fast** and **Slow** move modes. In **Fast** move mode the valve is opened or closed in 5% *increments* via the keypad. In **Slow** move mode the valve is opened or closed incrementally via the keypad.

17.13. OP

This function sets the valve to the fully energized position via the keypad (Outlet Port 1 = Supply psi & Outlet Port 2 = 0 psi). This function places the positioner in local control mode (input signal independent) and therefore allows override of the control signal.

17.14. CLs

This function sets the valve to the fully denergized position via the keypad (Outlet Port 1 = 0 psi & Outlet Port 2 = Supply psi). This function places the positioner in local control mode (input signal independent) and therefore allows override of the control signal.

18.Error Codes

Table 16 lists the Error Codes the positioner will display for the listed fault conditions.

Table 16 – Error Codes	
Abbreviation	Indication
Er0 3 (Error 3)	Low Input Pressure or Clogged Filter
Er6A (Lo cal)	Calibration Error - Positioner could not
	successfully perform Lo calibration
Er6B (Hi cal)	Calibration Error - Positioner could not
	successfully perform Hi calibration
Er6C (PID cal)	Calibration Error - Positioner could not
	successfully perform PID calibration

19.Channels

Channels are used to connect a Function Block to hardware functionality in the Transducer Block. A Channel links real world HW with the functionality of associated FB(s) as shown in <u>Figure 2</u>. *There can be only one physical output or input per Channel*. Multiple Channels may reference the same physical output or input, though not at the same time.

19.1. Analog Channels

The Analog Input Channel links the analog information of the FF ICoT-IS hardware to the fieldbus AI Function Block. The FF ICoT-IS analog input signal is the actual position of the actuator.

The Analog Output Channel links the analog information of the fieldbus AO Function Block to the FF ICoT-IS hardware. The FF ICoT-IS analog output signal is the setpoint for the actual position of the actuator.

ReadBack is the actual discrete state value provided by the Limit Sensors (if appropriately configured in **IO_OPTS** located in the DO FB). The actual discrete state is passed back through the Discrete Output function block via the **READBACK_D** parameter. Control schemes may use the **READBACK_D** value to reflect the actual position of the affected controlled element.

Discrete Output Channels link the discrete output information of the Discrete Output function blocks on fieldbus through the TB to the FF ICoT-IS Discrete Output HW (servo driver) and always includes ReadBack.

19.2. Channel Errors

Write checks limit the writing to only valid channels based upon the configuration already present. If no channels are currently configured, the first channel written determines the limits on subsequent channels.

Attempts to run devices with invalid channel selections will result in the blocks not running and the generation of active block alarms from one of the following errors:

- No Output Channels
- Close without Open
- Open without Close
- Conflicting Channels Assigned

19.3. Available Analog Input Channels

Table 17 – Analog Input Channels		
Channel	Channel Name	Channel Description
0	No Transducer	
	Connection	
2	Actual Position	Feedback of actual valve position
21	No Op - testing	

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

Table 18 – Analog Output Channels		
Channel	Channel Name	Channel Description
0	No Transducer	
	Connection	
1	Valve Position	Drives Valve to Open or Closed Position
21	No Op - testing	

19.4. Available Analog Output Channels

20.Conditionals

Conditionals are expressions in the device description that allow the enumerations of one parameter to be based on the value of another parameter. In other words, conditionals can be used to present the user a certain list of **OUT_D** enumerated values based on the Channel that was selected for the block.

ñ

Note NOTE: Some host systems handle conditionals correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process conditionals correctly and are unable to display the appropriate text strings.

The device contains several conditionally evaluated parameters. These conditionals are listed in this section.

21.Mode

Mode is a parameter of four parts:

- 1. Actual mode
- 2. Target mode
- 3. Permitted mode(s)
- 4. Normal mode.

Target mode may be set and monitored by the user. Target mode determines which mode the user wants the block to transfer.

Actual mode is set by the block during its execution and reflects the mode used during execution.

Allowed target modes are defined by permitted mode(s). This is configured in each block.

Normal mode is the desired operating mode of the block in normal operation.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

When a block is in **Out of Service** mode (**O/S** or **OOS**) it will not evaluate and the associated data will have **Bad Status**. If the mode is **OOS** the output of the function block is usually maintained at the last value but can be configured to go to a predefined **Fail State**.

Parameter configurations are usually performed in **OOS** mode so there is no bump in a running process. Before a particular block will be usable in a configuration, the mode must not be **OOS** and block specific parameters may need modification (appropriate Channel or **Action_Element** selected, etc.).

21.1. Supported Modes and Enumerations:

Note NOTE: Some host systems handle enumerations correctly while others do not. Please note that these tables may be very useful for those using host systems that do not process enumerations correctly and are unable to display the appropriate text strings.

Table 25 – Mode Enumerations	
Numerical	Enumerations
value	
0x01	Remote-Output (Rout)
0x02	Remote-Cascade (RCas)
0x04	Cascade (Cas)
0x08	Automatic (Auto)
0x10	Manual (Man)
0x20	Local Override (LO)
0x40	Initialization Manual (IMan)
0x80	Out of Service (OOS or O/S)

22.Supported Modes by Block Type

22.1. Analog Output Block Supported Modes

Table 26 - AO Block– Supported Modes	
Numerical	Enumerations
Value	
0x02	Remote-Cascade (RCas)
0x04	Cascade (Cas)
0x08	Automatic (Auto)
0x10	Manual (Man)
0x20	Local Override (LO)
0x40	Initialization Manual (IMan)

22.2. Analog Input Block Supported Modes

Table 27 – Al Block – Supported Modes		
Numerical Value	Enumerations	
0x08	Automatic (Auto)	
0x10	Manual (Man)	
0x80	Out of Service (O/S)	

22.3. Transducer Block Supported Modes

Table 30 – TB – Supported Modes		
Numerical Value	Enumerations	
0x08 0x10 0x80	Automatic (Auto) Manual (Man) Out of Service (O/S)	

ñ

Note NOTE: The modes supported by the transducer block are defined by the device manufacturer. In Man mode the *DO channel values are not acted upon*, but instead the output can be set using the SP_D and SP_D2 parameters.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

22.4. Resource Block Supported Modes

Table 31 – RB – Supported Modes		
Numerical Value	Enumerations	
value		
0x08	Automatic (Auto)	
0x40	Initialization Manual (IMan)	
0x80	Out of Service (O/S)	

Resource block supported modes are defined by the FF Specifications.

23.Status

Input and Output parameters have a value, and status. The status tells the condition of the value, whether the data is Bad, Uncertain, Good (cascade), or Good (non-cascade). A sub-status tells more about the value, such as possible reasons for the status. The Quality narrows the conditions even more.

Status can assist in diagnosing issues in the system and is used for validating communicated data.

24.ReadBack

Note NOTE: FOUNDATION fieldbus output blocks have a **READBACK** parameter. For different Channels it may show different values. Control schemes may use the **READBACK** value to reflect the actual state of the affected controlled element.

To enable **READBACK** in any standard FOUNDATION fieldbus output block two options must be verified.

- 1. In the RB, **FEATURE_SEL** must include bit 5-"Out ReadBack" (**FEATURE_SEL** enumeration 0x20). To change **FEATURE_SEL**, the RB must be in OOS.
- 2. In the Discrete Output block, the **IO_OPTS** Bit 9-"Use PV for **BKCAL_OUT**" must be selected to enable **READBACK**. Be sure the DO block is in OOS before modifying **IO_OPTS**.

25.Fault State

ñ

Note NOTE: The FAULT_STATE parameter, located in the RB, defines the action taken by a block when stale data or communication failure is detected. FAULT_STATE is also used when **bad** or **uncertain** quality is specified for each block. Function blocks that provide process output (DO, PID, etc.) will have parameters to allow a special "Fault State" action to be specified on detection of an input with bad or uncertain quality (stay put, fail open, etc.).

The actual **FAULT_STATE** parameter is included in the RB since it is common to all function and transducer blocks. The **FAULT_STATE** parameter determines the response of an output block if one or more **FAULT_STATE** conditions are present in the device longer than **FSTATE_TIME**. **FAULT_STATE** conditions include:

- loss of communications to CAS_IN
- Initiate FAULT_STATE status at CAS_IN when the target mode is CAS
- Initiate FAULT_STATE status at RCAS_IN when the target mode is RCAS

If a fault state condition does not clear within the user-defined **FSTATE_TIME**, then the block output will be automatically driven to the predefined fault state and, optionally, the target mode will be set to manual. The **FSTATE_TYPE** parameter determines the action to be taken - hold last value or go to the state defined by the user via the **FSTATE_VAL_D** parameter.

Writing the **SET_FSTATE** parameter of the RB may also put this block into the predefined **FAULT_STATE**. To clear the fault state, either the condition clears, or the user may write the **CLR_FSTATE** parameter in the RB.

The "Fault State to value" **IO_OPTION** determines whether the action is simply to hold the current state, or move to **FSTATE_VAL_D**. If the **IO_OPTION** is 0, the value will hold the current (freeze) if a fault is detected. If the **IO_OPTION** is 1, the output will go to the preset **FSTATE_VAL_D** value, if a fault is detected.

The "Target to Manual if IFS" **IO_OPTION** may be used to latch the **FAULT_STATE**. Setting this **IO_OPTION** will cause a **FAULT_STATE** block alarm and cause the target mode to automatically change to manual when a fault is detected. **The target mode needs to be manually changed from manual when conditions are corrected**.

> 280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

An FF alarm will be generated upon transition to an active fault state. The alarm will be handled using the standard alarm handling mechanism.

Table 32 – FSTATE_VAL_D Enumerations		
Numerical Value	Enumeration	
0	Class	
0	Close	
1	Open	
2	Stop	
3	No-Op	

The choices for **FSTATE_VAL_D** are:

26.Resource State

Note `NOTE: The **RS_State** (Resource State) parameter, located in the RB, reflects the overall status of the function block application. There are 6 resource state enumerations. The **RS_State** can be used to determine hardware and resource failures that effect operation of the device.

Table 33 – RB State Enumerations		
Numerical Value	Enumeration	Description
0x01	Restart	The resources are restarting and are unavailable at this time.
0x02	Init	Block resources are initializing. All Alarms are acknowledged and cleared automatically.
0x03	Linking	Links are being established, blocks are not yet ready for control.
0x04	Online	Operational, all systems functional. Links established and parameters evaluated.
0x05	Standby	Block mode is OOS.
0x06	Failure	Memory or other hardware failure that prevents reliable operation.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

27.Block_Error

NOTE: Use the **Block_Error** parameter as an aid in troubleshooting.

The **Block_Error** parameter, common to all blocks, will remain active until the condition causing the error is no longer active. The values for **Block_Error** are defined by the Fieldbus FOUNDATION.

Table 34 – Block Error Enumerations		
Numerical	Enumeration	
Value		
0x0001	Other	
0x0002	Block Configuration	
0x0004	Link Configuration	
0x0008	Simulation	
0x0010	Override	
0x0020	Fault State	
0x0040	Maintenance Needed Soon	
0x0080	Input Failure	
0x0100	Output Failure	
0x0200	Memory Failure	
0x0400	Lost Static Memory	
0x0800	Lost NV Memory	
0x1000	ReadBack Failure	
0x2000	Maintenance Needed Now	
0x4000	Power Up	
0x8000	Out of Service	

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

28.Westlock Specific Parameters

28.1. Block_Alarms_Active

Note Use the Block_Error parameter as an aid in troubleshooting

The **Block_Alarms_Active** parameter, located in the TB, gives the user further insight into configuration errors that prevent expected operation of the device. After the error is identified, the user must take the appropriate steps to eliminate the error before the device will function as intended.

Table 35 – Block_Alarms_Active Enumerations		
Numerical	Enumeration	Description
Value		
0x00000000	None Active	No active block alarms.
0x08000000	Fault State Active	Fault State is active in the transducer block
		due to an invalid input or misconfiguration.
0x04000000	Invalid Mode	The computed actual mode for the block is
		not supported, the block's actual mode will
		go to out of service
0x02000000	Bad Output	Conflicting output channels have been
	Configuration	assigned. Please review channels
		assignments and make appropriate
		corrections.
0x01000000	Invalid Input	The target position is not valid for the
		current device configuration.
0x00800000	Out Of Service	Transducer block is out of service.
0x00400000	No Output	No output channels have been assigned, i.e.
	Channels	there can be no action.
0x00200000	Open without	An 'Open' output channel has been assigned
	Close	without a 'Close' channel.
0x00100000	Conflicting	Conflicting output channels have been
	Channels	assigned, please review and correct.
0x00080000	Both Contacts	Both contacts are closed.
	Closed	
0x40000000	Mode Error	The mode calculator detected an error

28.2. Start_Up_State

The **Start_Up_State** parameter, located in the TB, specifies the initial position of the valve upon startup of the device.

Table 36 – Start_Up_State Enumerations		
Numerical Value	Enumeration	
0	Close	
1	Open	
2	Stop	
3	No-Op	

28.3. Fault_State

Note NOTE: If the status from the associated function block is bad or if the TB has determined a problem, the valve will default to this position.

The first valve is the target of the **FAULT_STATE** and the second valve is the target of **FAULT_STATE_2**. Both parameters are located in the TB.

Table 37 – Fault_State Enumerations		
Numerical Value	Enumeration	
0	Close	
1	Open	
2	Stop	
3	No-Op	

28.4. Discrete_State

The **Discrete_State** parameter, located in the TB, provides indication of the state of the following variables; Auxillary1 active, Auxilliary2 active, Write Protect Jumper Enabled, Simulate Jumper Enabled, Valve 1 Active, or Valve 2 Active.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 www.westlockcontrols.com

Table 38 – Discrete_State Enumerations		
Numerical	Enumeration	
Value		
0x01	Write Protect Jumper	
0x02	Simulate Jumper	
0x04	Valve1 Active	
0x08	Valve2 Active	
0x10	Auxiliary 1	
0x20	Auxiliary 2	

28.5. Action_Element

The **ACTION_ELEMENT** parameter is located in the TB and is user configurable. This parameter determines the type of valve operation required by the process application.

Table 39 – Action_Element Enumerations		
Numerical Value	Enumeration	
0	No Selection	
1	Single Action	
3	Double Action	
4	Single Action, Reverse Acting	
6	Double Action, Reverse Acting	
8	Independent, both Normal Acting	
9	Independent, 1Reverse Acting 2Normal Acting	
10	Independent, 1Normal Acting 2Reverse Acting	
11	Independent, both Reverse Acting	

о П

Note The selection of action element will affect the meaning of the outputs of the device. It **MUST** be configured and configured correctly or the device will not operate.

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

28.6. Cycle_Time_History

Cycle_Time_History is a configurable parameter located in the TB. A set of up to 400 cycle times can be stored in the device and later retrieved using the standard fieldbus trend system.

To store the cycle times the **CYCLE_TIME_COLECT_TYPE** parameter must be enabled. Either "continuous collection" or "one-time collection" may be chosen.

To initiate the collection of timing data the **COLLECT_CYCLE_TIME** parameter must be set to "Active". If you select "continuous collection", select "Inactive" to stop the collection of data.

To report the collected data, configure the **CYCLE_TIME_HISTORY** parameter as a standard fieldbus trend. Once configured, set the **COLLECT_CYCLE_TIME** parameter to "Report". The collected data will be sent via the standard trend mechanism. Once all the collected data has been reported, the report will stop. To have the report sent again, set **COLLECT_CYCLE_TIME** parameter to "Report" again.

29.Block Parameter Tables

Tables 24 – **27** list and define all parameters for each block contained in this device. The parameters are listed by name as they appear in the **Device Description** (see Section 4.2 above).

Note NOTE: Some parameters are Read/Write and others are read-only. Some Write parameters are only configurable when the appropriate interlocks are configured.

29.1. Transducer Block Parameter Descriptions

Table 40(a) – Transducer Block Parameter Descriptions		
Parameter	Description	
ACT_FAIL_ACTION	Specifies the final failure position of the actuator as	
	defined in section 4.6 of FF-903 rev PS3.0	
ACT_MAN_ID	The actuator manufacturer identification number.	
ACT_MODEL_NUM	The actuator model number.	
ACT_SN	The actuator serial number.	
ACTION_ELEMENT	User configurable parameter to determine the type of	
	valve operation needed. It MUST be set before	
	operation.	
ALERT_KEY	The identification number of the plant unit. This	
	information may be used in the host for sorting alarms,	
	etc.	
AUXINPUT1	State of first auxiliary discrete state.	

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913

www.westlockcontrols.com

AUXINPUT2	State of second auxiliary discrete state.
BLOCK_ALM	Used for all configuration, hardware, connection
	failure, or system problems in the block. The cause of
	the alert is entered in the subcode field. Queued and
	reported as generated.
BLOCK_ALMS_ACTIVE	Detailed listing of active block alarms to assist
	troubleshooting.
BLOCK_ERR	The error status associated with the hardware or
	software components associated with a block. It is a bit
	string, so that multiple errors may be shown.
BREAKAWAY_TIME	Westlock reported time taken for valve to begin
	moving.
CLEAR_CYCLE_COUNT	User writable to clear the cycle count of the first valve
	and begin counting from 0 again.
CLEAR_CYCLE_COUNT2	User writable to clear the cycle count of the second
	valve and begin counting from 0 again.
CLOSE_LIM_SWITCH	Discrete showing state of the close limit switch as seen
	in Shared Data.
COLLECT_CYCLE_TIME	Enables the collection of Cycle_Time in
	Cycle_Time_History
CYCLE_COUNT	Westlock reported number of cycles on the first valve.
CYCLE_COUNT_ALM	Alarm generated when the number of cycles on the first
	valve exceeds the limit.
CYCLE_COUNT_LIM	User configurable limit of number of cycles on first
	valve before alarm is generated.
CYCLE_COUNT2	Westlock reported number of cycles on the second
	valve.

Table 40(b) – Transducer Block Parameter Descriptions						
Parameter	Description					
CYCLE_TIME	Westlock reported time taken to cycle the valve.					
CYCLE_TIME_ALM	Alarm generated when valve does not cycle in					
	the desired time.					
CYCLE_TIME_COLLECT_TYPE	Selects Continuous or stop when full collection					
	of cycle time.					
CYCLE_TIME_HISTORY	Last Cycle_Time, used for trending					
	Cycle_Time					
CYCLE_TIME_LIM	User configurable Floating Point value used as					
	limit to determine Cycle Time alarm.					
CYCLE_TIME_PRI	User configurable priority of Cycle Time alarm					
DEVICE_ERR	Errors preventing proper operation of device.					
DISCRETE_STATE	FI generated value indicating whether					
	Auxillary1 active, Auxilliary2 active, Write					
	Protect Jumper Enabled, Simulate Jumper					
	Enabled, Valve 1 Active, or Valve 2 Active.					
FAULT_STATE	If the status from the associated function block					
	is bad or if the transducer block has determined					
	a problem, the first valve will default to this					
	position.					
FAULT_STATE2	If the status from the associated function block					
	is bad or if the transducer block has determined					
	a problem, the second valve will default to this					
	position.					
FINAL_POSITION_VALUE_D	Actual position of the first valve.					
FINAL_POSITION_VALUE_D2	Actual position of the second valve.					
FINAL_VALUE_D	The requested position and status written by a					
	discrete function block for the first valve.					
FINAL_VALUE_D2	The requested position and status written by a					
	discrete function block for the first valve.					
HI_TEMP_LIMIT	Sets the threshold for the HI_TEMP alarm					
LO_TEMP_LIMIT	Sets the threshold for the LO_TEMP alarm					
MASKABLE_SIGNAL	User configurable mask that allows alarms to be					
	linked as discrete parameter.					
MODE_BLK	The actual, target, permitted, and normal modes					
	of the block.					
MODULE_TEMP	Displays the ambient temperature of the FPAC-					
	NI-ULP					
OPEN_LIM_SWITCH	Discrete showing state of the open limit switch					
	as seen in Shared Data.					

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

Table 40(c) – Transducer Block Parameter Descriptions					
Parameter	Description				
SHARED_DATA	The shared data structure used for communication				
	between FF Function Blocks and hardware. This is				
	available for debugging and troubleshooting.				
SP_D	The discrete setpoint of the first valve.				
SP_D2	The discrete setpoint of the second valve.				
START_UP_STATE	The initial position of the valve upon startup.				
ST_REV	The revision level of the static data associated with the				
	function block. To support tracking changes in static				
	parameter attributes, the associated block's static revision				
	parameter will be incremented each time a static parameter				
	attribute value is changed. Also, the associated block's				
	static revision parameter may be incremented if a static				
	parameter attribute is written but the value is not changed.				
STRATEGY	The strategy field can be used to identify grouping of				
	blocks. This data is not checked or processed by the				
	block.				
SUPPORTED_MODES	Read only parameter that indicates the modes supported				
	by the block.				
TAG_DESC	The user description of the intended application of the				
	block.				
TRAVEL_TIME	Westlock reported time needed for the valve to move				
	between limit switches.				
UPDATE_EVT	This alert is generated by any change to the static data.				
VALVE_MAN_ID	The valve manufacturer identification number.				
VALVE_MODEL_NUM	The valve model number.				
VALVE_SN	The valve serial number.				
XD_CAL_DATE	The date of the last positioner calibration.				
XD_CAL_LOC	The location of last positioner calibration. This describes				
	the physical location at which the calibration was				
	performed.				
XD_CAL_WHO	The name of the person responsible for the last positioner				
VD EDDOD	calibration.				
XD_ERROR	One of the error codes defined in section 4.8 XD_ERROR				
	and Block Alarm Subcodes (FF-903 revPS3.0 section 4.8)				
VALVE_IYPE	I ne type of the valve as defined in section 4. / Valve				
	l Type.				

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

Table 41(a) – R	esource Block Parameters
Parameter	Description
ST_REV	The revision level of the static data associated with the function
	block. To support tracking changes in static parameter attributes,
	the associated block's static revision parameter will be
	incremented each time a static parameter attribute value is
	changed. Also, the associated block's static revision parameter
	may be incremented if a static parameter attribute is written but
	the value is not changed.
TAG_DESC	The user description of the intended application of the block.
STRATEGY	The strategy field can be used to identify grouping of blocks. This
	data is not checked or processed by the block.
ALERT_KEY	The identification number of the plant unit. This information may
	be used in the host for sorting alarms, etc.
MODE_BLK	The actual, target, permitted, and normal modes of the block.
BLOCK_ERR	This parameter reflects the error status associated with the
	hardware or software components associated with a block. It is a
	bit string, so that multiple errors may be shown.
RS_STATE	State of the function block application state machine.
TEST_RW	Read/write test parameter – used only for conformance testing.
DD_RESOURCE	String identifying the tag of the resource which contains the
	Device Description for this resource.
MANUFAC_ID	Manufacturer identification number – used by an interface device
	to locate the DD file for the resource.
DEV_TYPE	Manufacturer's model number associated with the resource – used
	by interface devices to locate the DD file for the resource.
DEV_REV	Manufacturer revision number associated with the resource – used
	by an interface device to locate the DD file for the resource.
DD_REV	Manufacturer revision number associated with the resource – used
	by an interface device to locate the DD file for the resource.
GRANT_DENY	Options for controlling access of host computer and local control
	panels to operating, tuning and alarm parameters of the block.

29.2. Resource Block Parameters

Table 41(b) – Re	source Block Parameters
Parameter	Description
HARD_TYPES	The types of hardware available as channel numbers.
RESTART	Allows a manual restart to be initiated. Several degrees of restart
	are possible. They are 1: Run, 2: Restart resource, 3: Restart
	with defaults, and 4: Restart processor.
FEATURES	Used to show supported resource block options.
FEATURE_SEL	Used to select resource block options.
CYCLE_TYPE	Identifies the block execution methods available for this
	resource.
CYCLE_SEL	Used to select the block execution method for this resource.
MIN_CYCLE_T	Time duration of the shortest cycle interval of which the
	resource is capable.
MEMORY_SIZE	Available configuration memory in the empty resource. To be
	checked before attempting a download.
NV_CYCLE_T	Minimum time interval specified by the manufacturer for writing
	copies of NV parameters to non-volatile memory. Zero means it
	will never be automatically copied. At the end of
	NV_CYCLE_TIME, only those parameters which have changed
	(as defined by the manufacturer) need to be updated in NVRAM
FREE_SPACE	Percent of memory available for further configuration. Zero in a
	preconfigured resource.
FREE_TIME	Percent of the block processing time that is free to process
	additional blocks.
SHED_RCAS	Time duration at which to give up on computer writes to
	function block RCas locations. Shed from RCas shall never
	happen when $SHED_RCAS = 0$.
SHED_ROUT	Time duration at which to give up on computer writes to
	function block ROut locations. Shed from Rout shall never
	happen when SHED_ROUT = 0.
FAULT_STATE	Condition set by loss of communication to an output block, fault
	promoted to an output block or a physical contact. When Fault
	State condition is set, Then output function blocks will perform
	their FSTATE actions.
SET_FSTATE	Allows the Fault State condition to be manually initiated by
	selecting Set.
CLR_FSTATE	Writing a Clear to this parameter will clear the device fault state
	if the field condition, if any, has cleared.
MAX_NOTIFY	Maximum number of unconfirmed notify messages possible.
LIM_NOTIFY	Maximum number of unconfirmed alert notify messages
	allowed.

Table 41(c) – Resour	ce Block Parameters
Parameter	Description
CONFIRM_TIME	The time the resource will wait for confirmation of receipt
	of a report before trying again. Retry shall not happen
	when $CONFIRM_TIME = 0$.
WRITE_LOCK	If set, no writes from anywhere are allowed, except to clear
	WRITE_LOCK. Block inputs will continue to be updated.
UPDATE_EVT	This alert is generated by any change to the static data.
BLOCK_ALM	The block alarm is used for all configuration, hardware,
	connection failure or system problems in the block. The
	cause of the alert is entered in the subcode field. The first
	alert to become active will set the Active status in the
	Status attribute. As soon as the Unreported status is cleared
	by the alert reporting task, another block alert may be
	reported without clearing the Active status, if the subcode
	has changed.
ALARM_SUM	The current alert status, unacknowledged states, unreported
	states, and disabled states of the alarms associated with the
	function block.
ACK_OPTION	Selection of whether alarms associated with the block will
	be automatically acknowledged.
LS_CAL_SWITCH	Parameter must be enabled for the Limit Sensor
	Calibration Switch to be operative.
SET_CURRENTSINK	Allows user to select Ultra-low Current mode (FPAC-NI
	consumes 18 mA) by disabling I/O LED(s).
WRITE_PRI	Priority of the alarm generated by clearing the write lock.
WRITE_ALM	This alert is generated if the write lock parameter is
	cleared.
ITK_VER	Major revision number of the interoperability test case
	used in certifying this device as interoperable. The format
	and range of the version number is defined and controlled
	by the Fieldbus Foundation. Note: The value of this
	parameter will be zero (o) if the device has not been
	registered as interoperable by the FF.
BLOCK_ALMS_ACT	Enumerations of the active blocks alarms for improved
	debugging.
SUPPORTED_MODES	The modes supported by the block.
IKEY	License key.
REVISION_ID	The revision identifier of the device.
REVISION DATE	The revision date of the device.

30.Transducer Block Views

30.1. Analog Transducer Block Views

Table 42 – Analog Transducer Block Views									
Parameter	Relative Index	VIEW_1	VIEW_2	VIEW_3	VIEW_4				
ST_REV	1	1	2	3	4				
TAG_DESC	2								
STRATEGY	3				4				
ALERT_KEY	4				4				
MODE_BLK	5	1		3					
BLOCK_ERR	6	1		3					
UPDATE_EVT	7								
BLOCK_ALM	8								
XD_ERROR	9	1							
FINAL_VALUE	10	1							
FINAL_POSITION_VALUE	11	1							
FINAL_VALUE_RANGE	12		2						
SP	13	1							
BLOCK_ALMS_ACT	14	1							
SUPPORTED_MODES	15				4				

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

Table 43(a) – Health Transducer Block Views										
Parameter	Relative	VIEW_1	VIEW_2	VIEW_3	VIEW_3(2)	VIEW_4	VIEW_4(2)	VIEW_4(3)	VIEW_4(4)	VIEW_4(4)
	Index	1	•	2	2	4	4	4	4	4
SI_REV	1	1	2	3	3	4	4	4	4	4
TAG_DESC	2									
STRATEGY	3					4				
ALERT_KEY	4					4				
MODE_BLK	5	1		3						
BLOCK_ERR	6	1		3						
UPDATE_EVT	7									
BLOCK_ALM	8									
XD_ERROR	9	1		3						
BOARD_STATUS	10	1		3						
VALVE_MAN_ID	11						4			
VALVE_MODEL_NUM	12						4			
VALVE_SN	13						4			
VALVE_TYPE	14						4			
XD_CAL_DATE	15							4		
XD_CAL_LOC	16							4		
XD_CAL_WHO	17							4		
ACT_FAIL_ACTION	18								4	
ACT_MAN_ID	19								4	
ACT_MODEL_NUM	20								4	
ACT_SN	21								4	
PRESSURE_VALUE	22				3					
DAMPING_VALUE	23				3					
SENSOR_SN	24				3					
MIN_SENSOR_SPAN	25				3					
FLOW_TYPE	26				3					
LIMIT_ENABLE	27				3					

30.2. Health Transducer Block Views

Table 43(b) – Health Transducer Block Views										
Parameter	Relative Index	VIEW_1	VIEW_2	VIEW_3	VIEW_3(2)	VIEW_4	VIEW_4(2)	VIEW_4(3)	VIEW_4(4)	VIEW_4(4)
FLOP_MODE	28				3					
CUTOFF_MODE	29				3					
COMPENSATOR_GAIN_S	30				3					
ETTING										
COMPENSATOR_DERIVA	31				3					
TIVE_GAIN_SWITCH										
COMPENSATOR_DERIVA	32				3					
TIVE_GAIN_SETTING										
INTEGRATOR_SETTING	33				3					
VALVE_OPEN_SLEW_LI	34				3					
MIT										
VALVE_CLOSE_SLEW_LI	35				3					
MIT										
INTEGRAL_CONTROL_E	36				3					
NABLE										
TRAVEL_UPPER_LIMIT	37				3					
TRAVEL_LOWER_LIMIT	38				3					
AUTO_CALIBRATION	49				3					
LOW_CALIBRATION	40				3					
HIGH_CALIBRATION	41				3					
DIGITAL_TUNING	42				3					
AUTO_PID_CALIBRATIO	43				3					
Ν										
SENSOR_CALIBRATION	44				3					
TRANSDUCER_CALIBRA	45				3					
TION										
TERMINATE_CALIBRATI	46				3					
ON										
MASKABLE_SIGNAL	47		2							4
SIGNAL_MASK	48		2							4
BLOCK_ALMS_ACTIVE	49	1		3						
SUPPORTED_MODES	50									4

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

D.W.O. 16730

www.westlockcontrols.com

31.Configuring the Device for Operation

31.1. Transducer Block

31.1.1. Required Configuration

- ACTION_ELEMENT
- MODE_BLK.TARGET

31.1.2. Suggested Configuration

- SIGNAL_MASK
- START_UP_STATE
- FAULT_STATE1
- FAULT_STATE2
- CYCLE_COUNT_LIM
- CYCLE_COUNT_PRI
- CYCLE_TIME_LIM
- CYCLE_TIME_PRI
- HI_TEMP_LIMIT
- LO_TEMP_LIMIT

31.1.3. Optional Configuration

- TAG_DESC
- ACT_FAIL_ACTION
- ACT_MAN_ID
- ACT_MODEL_NUM
- ACT_SN
- VALVE_MAN_ID
- VALVE_MODEL_NUM
- VALVE_SN
- VALVE_TYPE
- XD_CAL_LOC
- XD_CAL_DATE
- XD_CAL_WHO
- COLLECT_CYCLE_TIME
- CYCLE_TIME_COLLECT_TYPE
- CLEAR_CYCLE_COUNT
- CLEAR_CYCLE_COUNT2

31.2. Resource Block

- 31.2.1. Required Configuration
 - MODE_BLK.TARGET
- 31.2.2. Suggested Configuration
 - FEATURE_SEL
 - SET_CURRENTSINK
 - LS_CAL_SWITCH
- 31.2.3. Optional Configuration
 - TAG_DESC
 - SHED_RCAS
 - SHED_ROUT
 - FAULT_STATE
 - WRITE_PRI

Appendix A

	4	3	↓ 2	1
	FISCO-Concept The FISCO concept eliges interconnection of intrinsic	ily sofe apparatus to		040 040040 040 040 040 040
D	casediate apparatus not apacifically asamined in suc The ortherate for interconnection is that the voltage (L (L) or Linco) and the passe (Pi or Press) which into reache and remain intrinsically safe, considering fault than the voltage (Uo or Voc or VI), the current (s, (Po or Press) leads which can be delay and by the r consolering faults and applicable factors in addition, capacitance (c) and inductance (L) of such appared connected to the Fieldbus must be lead than or equ	A combination. In or Yuna), the current heicely safe apparatus con s, must be equal or greater lac or th) and the power issociated opportune. the movimum unprotected the movimum unprotected is to fir found 10 µH respectively.	HAZARDOUS (CLASSIFIED) LOCATION Class L Zone D, EX lo IIC 74 Class L Division 1, Groups A, B, C, D Class II, Division 1, Groups E, F, G Class II, Division 1	
	In each segment only one active device, normally the is allowed to provide the necessory energy for the F The validation UD (or Voc or VA) of the associated app range of 144 to 244 d.e. All other equipment conner to be preserve, meaning that they are not allowed to the methany possing equipment needs a galaxiet is being the intrinsically source Fieldous circuit remains possive.	i associated apparatus. Bibbs syntem. santus has to be finited to the ted to the bus cable has pravids anargy to r soch connected device. for to casure that		
С	The coble used to Interconnect the devices needs to the following range: toop resistance R: 151 inductance per unit length 1: 0.41 oppositonos per unit length 1: 0.42 C ←C' invy/ins +0.5 C' ins/serces, fi the s C ←C' invy/ins +C' ins/serces, fi the s	have this parameters in 50 Ohmy/ann mh/van 20 nF/ann chillines ane floating or creach is convected to		
	unne rree kength of trunk coble: ≤ 30m kength of trunk coble: S 1km kength of capilao: S 1m At each and of the trunk coble an approved infolfbit following parameters is sufable:	Fre termination with the	UNID-SWITCH. 177 U (Masc)-17.5V I (Masc)=380mA P (Prost)-5.32W U Store U=10uH	
+	f=02,2 µ ¹ One of the solutions of the second terminations might elevady be interaction of possible devices acconnected to the bus due to 1.3, research. If the base number of truth cable and all a due to 1.3, research. If the cable number subscript 1000 m (sum of the length of truth cable and all a copportance of the cable will not import the intrinsio	agrated in the accomment is not limited , up to a total length of pur cabled), the inductance and accleby of the installation.	Fill Approved Intrinsically Soft Approved suitable for FISCO Concept	
В	Notes: INITRINSICALLY SAFE CLASS I, DN.1, GROUPS A, B, C, 1. FM Approved apportue must be installed in accor 2. FM Approved associated apportue must meet the Us or free or VF SU (Yman) and is on be or 1 3. The mathematic field appoint of the original must 4. The installation must be in occording as with the N and NSJ/SA- Re 12.8 (accept chapter 5). 3. Withple aosthing of accesses is blogster 5). 5. Withple aosthing of accesses is blogster 57. C a 7. Warning: Substitution of components may impore b	0 dance with manufacturer instructions. following requirements: is ((Inrac) and Po or Proxes & PK(Prox), not exceed 250 V. atternal Beachad Code NFPA 70 integrity equipotentinal system its realised bave surrounding temperature. trinate partety.	Any FM Approved R = 90 - 100 Oferro	B
-			C = 02.2 μF	i F
A	 NONINCENDME, CLASS 1, DN.2, DROUP A, B, C, D AN DW1, DROUP E, F, B HAZARDONS LOCATION INSTALLA INISTALL PER NATIONAL ELECTRICAL CODE (NEC) US Intrivate settay barrier not required. Max. supply 2 A Duct tight source in must be used at the convolute a CLASS II & III Location. NONINC: Explosion Heazed - do not sizeonnect a off or the arms is inner to be Non-Hazardous. WARNING: Substitution of components may impair v 	D DIP for CLASS II AND III, TON. NOT THREADED METAL CONDUIT. Nothing SAV. For T-code say toble. Thy when the tomorritler is used in a quipment the tomorritler is used in a quipment unless power has been ewitched suftability for CLASS I, Division 2.	THIS DRAWING CONTAINS CONTROLING INFORMATION MATCH AND BELLED IN CONTROLOGICAL STREAM OF THE CONTROLOGICAL STREAM OF THE CONTROL STR	APPEORAL DATE DEAVINE 7/27/04 CONTROLS CORPORATION APPEORED: CONTROLS CORPORATION FEE: PHICOT DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT HISCO CONTROL DRAWING DEAVING CARCENDER HIGCOT HISCO CONTROL DRAWING DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT DEAVING CARCENDER HIGCOT DEAVING HIGCOT HIGCOT DEAVING HIGCOT
	4	3	↑ 2	1

280 Midland Ave., Saddle Brook, NJ 07663 USA

Phone: (201) 794-7650 Fax: (201) 794-0913

D.W.O. 16730

www.westlockcontrols.com

Appendix **B**

Global Contacts

<u>USA</u>

Westlock Controls Corp. 280 Midland Ave. Saddle Brook, NJ 07663 Phone: (201) 794-7650 • Fax: (201) 794-0913 Email: herbtucker@westlockcontrols.com Internet http://www.westlockcontrols.com

Europe

Westlock Controls UK Chapman Way, Tunbridge Wells Kent, England TN23EF Phone: 011-441-892-519046 • Fax: 011-441-892-516279

South America

Westlock Equipmentos De Controles Ltda. Rua São Paulo, 291 - Alphaville Barueri - São Paulo Cep 06465-130 Phone: 011-55-11-7291-0930 • Fax: 011-55-11-7291-0931

> 280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>

Appendix C

Ordering Guide

280 Midland Ave., Saddle Brook, NJ 07663 USA Phone: (201) 794-7650 Fax: (201) 794-0913 <u>www.westlockcontrols.com</u>